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ABSTRACT: The ability of peptides to construct specific secondary
structures provides a useful function for biomaterial design that cannot be
achieved with traditional organic molecules and polymers. Inhibition of
amyloid formation is a promising therapeutic approach for the treatment of
neurodegenerative diseases. Existing peptide-based inhibitors are mainly
derived from original amyloid sequences, which have very limited sequence
diversity and activity. It is highly desirable to explore other peptide-based
inhibitors that are not directly derived from amyloid sequences. Here, we
develop a hybrid high-throughput computational method to efficiently screen
and design hexapeptide inhibitors against amyloid-β (Aβ) aggregation and
toxicity from the first principle. Computationally screened/designed
inhibitors are then validated for their inhibition activity using biophysical
experiments. We propose and demonstrate a proof-of-concept of the “like-
interacts-like” design principle that the self-assembling peptides are able to interact strongly with conformationally similar motifs
of Aβ peptides and to competitively reduce Aβ−Aβ interactions, thus preventing Aβ aggregation and Aβ-induced toxicity. Such a
de novo design can also be generally applicable to design new peptide inhibitors against other amyloid diseases, beyond
traditional peptide inhibitors with homologous sequences to parent amyloid peptides.
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The pathology of Alzheimer’s disease (AD) is tightly linked
to the misfolding and self-aggregation of amyloid-β (Aβ)

peptides into extracellular amyloid plaques containing β-
structure-rich fibrils in the human brain. Great efforts and
progress have been made to develop inhibitors that can (i)
block the expression of the amyloid precursor protein (APP),
(ii) prevent the proteolytic cleavage of APP into Aβ peptide, or
(iii) clear different Aβ aggregates (monomers, oligomers, or
fibrils) from the human body.1−3 However, these strategies
have not produced any effective clinical agent to date. In
addition to the upstream processes, searching for inhibitors that
can inhibit Aβ aggregation would provide alternative
therapeutic opportunity for treating AD. Small organic
molecules and peptides/peptidomimetics are the two major
classes of inhibitors being currently developed for the
prevention of Aβ aggregation and Aβ-induced cell toxicity.4−6

Peptide-based inhibitors offer several advantages over organic
inhibitors: ease of synthesis and sequence/structure modifica-
tions, benign biocompatibility, and biomimetic nature.
However, the existing peptide-based inhibitors have very
limited sequence diversity, because most of them are derived

from the central hydrophobic cluster or hydrophobic C-
terminal sequences of full-length Aβ1−42 such as Aβ15−21,
Aβ16−22, Aβ30−40, Aβ34−42, and other mutated analogues.7−9

Since these Aβ fragments are highly homologous to Aβ
sequence, it is not surprising that they could interact with the
homologous sequence and conformationally similar β-sheet-
rich structure of Aβ to mediate the folding and aggregation of
Aβ.10,11 Similar design strategy has often been used to search
the entire sequence of other amyloid peptides and to identify
peptide fragments, which have the potential to inhibit the
aggregation of the parent amyloid peptides. A number of
fragmental inhibitors have been found to inhibit their parent
amyloid peptides of α-synuclein,12 human islet amyloid
polypeptide (hIAPP),13−16 serum amyloid protein,17 and β2-
microglobulin.18 Interestingly, some peptide fragmental inhib-
itors can also independently form amyloid fibrils with similar
structural morphologies to those formed by their parent
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peptides. To a broader extent, recent studies have shown that
the cross-sequence interaction between different amyloid
peptides was observed between Aβ-tau,19,20 Aβ-hIAPP,21−23

Aβ-transthyretin,24 α-synuclein-tau,25,26 tauK18-tauK19,27,28

human IAPP-rat IAPP,29,30 SEVI-PAP248−286,31 α-synuclein-
insulin,32 and IAPP-insulin.33−35 Some of cross-sequence
interactions promote amyloid aggregation, while others do
not. This may imply that the cross-sequence interaction could
be governed by conformational selection of compatible states
between different amyloid peptides. If the dominant con-
formations of two amyloid sequences are similar, they can
interact with each other.36 While the molecular mechanisms of
peptide-based inhibitors against amyloid folding and aggrega-
tion have not been clearly understood due to its complexity,
these studies of cross-sequence interactions between different
amyloid peptides seem to suggest that both homologous and
heterogeneous amyloid sequences, as long as they possess
similar β-sheet-rich conformations, can interact with each other
via the conformational selection (i.e., “like-interacts-like”)
mechanism, which in turn modulates amyloid aggregation
under certain conditions. Therefore, it is possible to search for
peptide inhibitors that do not necessarily have homologous
sequences to their parent amyloid peptides.37,38

Considering that all amyloid peptides exhibit strong self-
aggregation ability and share common β-sheet structural
characteristics, we proposed a “like-interacts-like” hypothesis
to design peptide-based amyloid inhibitors: if computationally
designed peptides exhibit strong self-aggregation ability to form
β-structure-rich aggregates, these peptides are likely to interact
strongly with structurally similar motifs of Aβ peptides and to
competitively reduce Aβ-Aβ interactions, leading to the
prevention of Aβ aggregation.37,39−41 Herein, we combined
bioinformatics model, molecular dynamics (MD) simulations,
and in vitro experiments to test design principle for designing
new peptide-based inhibitors in a large-scale of sequence space,
which are not derived from Aβ sequence. We developed a cost-
effective, high-throughput screening QSAR (quantitative
structure−activity relationship) method to establish a se-
quence−structure−activity relationship of the available peptide
inhibitors in database, and then applied the QSAR model to
select the representative inhibitor sequences to test our design
principle. MD simulations were used to determine the self-
aggregation ability, structural characteristics, and interaction
modes of β-sheet formation of designed peptide inhibitors. The
inhibition capacity of the designed peptide inhibitors against Aβ
aggregation and Aβ-induced cell toxicity was further validated
using ThT, CD, AFM, SPR, and cell assay. This work provides
a new structure-based design principle for the design of
heterogeneous peptide-based amyloid inhibitors beyond tradi-
tional homologous peptide inhibitors that are directly derived
from Aβ sequence.

■ RESULTS AND DISCUSSION
Computational Design and Screen of Amyloidogenic

Hexapeptides. To test our design hypothesis, we developed a
structure-based “Index of Natural and Non-natural Amino
Acids” (NNAAIndex) QSAR model to high-throughput screen
and identify new amyloidogenic hexapeptides as potential Aβ
inhibitors. Briefly, the NNAAIndex was able to characterize a
total of 335 physicochemical and other properties for 20 natural
and 593 non-natural amino acids, followed by clustering these
335 properties into 6 fingerprint factors, that is, hydrophobicity,
alpha and turn propensity, bulky property, local flexibility,

compositional characteristics, and electronic property. Based on
fingerprint factor scores for each amino acid, the NNAAIndex
method can represent sequence and structural features of any
peptide or peptidomimetics by simply constructing 6 × n
matrices (n is the number of residues). We have successfully
applied the NNAAIndex-QSAR method to high-throughput
screen and design (non)natural peptides of bitter tasting
dipeptides, angiotensin-converting enzyme inhibitors, and
silica-binding peptides.42

Here, we first used two experimentally verified amyloido-
genic hexapeptide databases (the Waltz database43 and the
AmylHex database44,45 containing a total of 278 hexapeptide
sequences) as an initial training data set to construct a
NNAAIndex model. Then, we combined the NNAAIndex
model with linear discriminant analysis (LDA) method to
screen, design, and identify 8000 new peptides with predictable
self-assembling activity (positive discriminant score, denoted as
+) and an additional 30 000+ peptides with non-self-assembling
activity (negative discriminant score, denoted as −). The
hexapeptides(+) are completely different from any fragmental
sequence of Aβ, but they are capable of self-assembling into
amyloid-like aggregates and fibrils. Some representative
hexapeptides are listed in Table S1 in the Supporting
Information. The validity and self-consistency of the QSAR
model were assessed by the leave-one-out cross-validation,
resulting in predictive accuracy of 71.94%, sensitivity of 75.86%,
specificity of 69.14%, and area under the receiver operating
characteristic curve of 0.725 (Supporting Information Figures
S1−S4). This confirms that the NNAAIndex-QSAR yields
satisfactory external predictive ability. The detailed QSAR
algorithms, model description, analysis methods, and statistical
results and interpretation are provided in the Supporting
Information (Figures S1−S6).
Figure 1 shows the position preference of specific amino

acids with different fingerprint properties that control the self-

assembling ability of the designed hexapeptides. It is clear that
some amino acid positions at 1, 3, 4, and 5 are more crucial, as
amino acid residues in these positions can be substituted to
improve self-assembling ability. Interestingly, for modulation of
the hydrophobicity and steric hindrance, we found that only a
slight preference of hydrophobic and bulky properties of the
residues at 1, 3, 5 and 4, 5 positions was detected, respectively.
Balancing with other physical properties such as local flexibility,
it appears that the sequence composition is more important for
improving self-assembling ability, and this finding is similar to
those works by Eisenberg et al. and Rousseau et al.43,45 Further

Figure 1. (Dis)favored amino acids at different positions with six
fingerprint factors for controlling self-assembling properties of
hexapeptides. Amino acids are represented by single letters. The “+”
and “−” represent positive and negative contributions to the
discriminant scores, respectively. H (hydrophobicity), BP (bulky
properties), LF (local flexibility), and CC (compositional character-
istics).
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analysis of the effects of six fingerprint properties at different
positions between self-assembling and non-self-assembling
sequences revealed obvious differences in the hydrophobicity
of the third, fourth, and fifth positions, the alpha and turn
propensities of the first, third, and fifth positions, the bulky
properties of the first, fourth, and fifth positions, and the
compositional characteristics and electronic properties of the
third and fifth positions (Figure S5). While the NNAAIndex-
QSAR model enables one to high-throughput screen a huge
sequence space and to establish the correlation of peptide
quantifiable properties (descriptors) with self-assembling
properties. But this model does not necessarily attempt to
directly and truly determine self-assembling peptides due to the
lack of 3D structures of peptides, atomic interactions between
and within peptides, and environmental effects. Thus, of the
8000 sequences with self-assembling propensity predicted by
QSAR, we randomly selected 35 hexapeptides with the
predictive high, moderate, and low self-assembling ability as
indicated by discriminant scores to examine their self-
assembling properties and structural features using atomistic
MD simulations and experiments (Table S1). The selected
hexapeptides are highly hydrophobic, but still contain at least
one polar residue and one spacer residue to enhance their water
solubility.
MD Simulations of Self-Assembling Property of

Amyloidogenic Hexapeptides. Given that dimer is a basic
building block for any large self-assembling aggregate, we
performed all-atom explicit-water MD simulations to examine
the structural stability of 35 designed hexapeptide dimers
(Table S1), with two typical peptide organizations (parallel and
antiparallel orientation relative to each other) using the NAMD
program46 and the CHARMM27 force fields.47 A dimer was
constructed by packing two peptides, each adopting a β-strand
conformation, on the top of each other in either a parallel or
antiparallel manner, with an initial peptide−peptide separation
distance of ∼4.7 Å. Such a conformation corresponds to the
characteristic X-ray scattering diffraction signal of interstrand
distance in β-sheets of amyloid fibrils. MD trajectories showed
that 11 out of 35 peptide dimers exhibited relative high
structural stability (the data in Figure 2 show the structurally
unstable sequence of PTRCGP as a negative control). Figure
S7 shows the backbone RMSD of hexapeptide dimers with
parallel and antiparallel peptide organizations, demonstrating
the structural stability of self-assembling hexapeptides during 20
ns simulations. With the parallel organization, except for
CTIYWG(+) and PTRCGP(−) which tend to disassociate with
each other, the other 10 hexapeptides(+) were able to retain
high β-sheet contents (66%−85%) with an averaged interpep-
tide distance of 5.4−6.7 Å (Figure 2A). Interestingly,
GTVWWG(+) changed its initial parallel organization into
antiparallel one, while still remaining tight interpeptide
association and stable β-sheet structure afterward. Consistent
with parallel models, Figure 2B shows that most of the stable
parallel dimers can also retain the stable antiparallel orientation
with strong peptide association with the following exceptions:
(i) ITLFWG(+) exhibited unstable (stable) structure in
antiparallel (parallel) packing; (ii) PTRCGP(−) as a negative
control lost 90% of native contacts and initial ordered structure
for both parallel and antiparallel organizations; (iii)
GTVWWG(+) was quite stable with a preferable antiparallel
packing, consistent with orientation change from parallel
orientations; and (iv) CTIYWG(+) tended to adopt a stable,
antiparallel structure over an unstable parallel structure. Our

MD results not only confirm the designs by QSAR method, but
also suggest mixed dimers with both parallel and antiparallel
conformations coexist in fibers.
A secondary structural analysis also confirmed that regardless

of parallel or antiparallel packing, most of stable dimers retain a
high content of the β-structure more than 65% (Figures 2 and
S8A). A large population of the β-sheet structure was inherent
to hydrogen bonding between dimeric peptides. For stable
dimers, hydrogen bonds between adjacent peptides are almost
evenly distributed along the two β-strand directions throughout
the simulations. Once formed, these hydrogen bonds of ∼4+
pairs are rarely broken and act as a zipper to retain the
(anti)parallel interchain organization (Figures 2A,B and S8B).
Some short peptides have been computationally identified to
amyloid-like fibrils via self-complementary, steric zippers
between β-sheets.45 To more precisely interpret the structural
stability of dimers, we calculated nonbonded interactions
between peptides that account for all different contributions
from hydrogen bonding, hydrophobic interaction, π−π
stacking, and other side chain contacts. Figure 2C shows that,
of nine stable dimers depicted, the change of the relative
orientation of these peptides from parallel to antiparallel did
not cause a large change of favorable interpeptide interactions,
with a small range of energy differences of 1.1−13.4%.
Decomposition the interpeptide interaction energies into the
van der Waals (VDW) and electrostatic contributions further
revealed that irrespective of peptide sequence and orientation,

Figure 2. Structural and energetic characteristics for hexapeptide
dimers. MD snapshots of hexapeptide dimers with (A) parallel and (B)
antiparallel peptide organizations. β-Sheet percentage and number of
hydrogen bonds of hexapeptide dimers are listed in parentheses. (C)
Averaged nonbonded interaction energy between two adjacent
peptides of dimers. There is a reasonable positive correlation between
β-sheet content/the number of hydrogen bonds and interpeptide
interactions between peptides.
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VDW interaction is comparable to electrostatic interaction
(Figure 2C), suggesting that peptide association is in a
cooperative mode. Some peptides (e.g., ITLFWG, VTLWWG,
CTLWWG, and CTIYWG) showed notable difference in
electrostatic interactions between parallel and antiparallel
models.
Experimental Assessment of Computationally De-

signed Hexapetides for Fibrillation. To validate the designs
by QSAR model and MD simulations, we examined whether
these designed peptides can self-assemble into amyloid-like
fibrils containing the typical β-sheet structure using atomic
force microscopy (AFM) and circular dichroism (CD). AFM
images (Figure 3) clearly showed that, upon incubation of 11
hexapeptides(+) at 2 mM in PBS solution, all peptides(+)
exhibited amyloidogenic propensity to some degrees. Nine
peptides (CILFWG, CTIYWG, CTLWWG, GTVWWG,
IQIMIW, VTLWWG, CTVWWG, CTVFIG, and VYIMIG)
formed long and thick amyloid-like fibers with diameters of 5−
15 nm and lengths of ≥1 μm, while two peptides (ITLFWG
and GTLFWG) formed a few very short and broken fibers (≤1
μm) and exhibited moderate amyloidogenic propensity. In
contrast, the non-amyloid-forming PTRCGP(−) does not form
any fibrillar-like aggregate, but instead amorphous aggregates
with diameters up to 22 nm. CD spectra juxtaposed below
corresponding AFM images in Figure 3 showed that all of the
freshly prepared hexapeptides initially adopt a random coil
conformation at the very beginning of incubation (cf. the large
and deep minimum at ∼197 nm). GTVWWG(+), CTIYWG-
(+), and CTVWWG(+) also displayed a second, small
minimum at ∼220 nm, suggesting a mixed β-strand/turn
conformation. Upon a 2 week incubation, all of the
hexapeptides(+) clearly underwent conformational transition

to the β-sheet-rich structures, as indicated by a large maximum
value at ∼197 nm and a minor minimum value at ∼222 nm. As
expected, PTRCGP(−) does not show any spectral shift over
time, which is indicative of the absence of any β-structure. Our
AFM and CD results confirmed the self-aggregation ability
predicted by QSAR model and MD simulations. Therefore, the
combination of these two computational methods enabled us to
develop a cost-effective, high-throughput design/screen of new
amyloid-forming peptides from a large pool of sequences.

Experimental Examination of the “Like-Interacts-Like”
Model between Aβ and Hexapeptides. We further tested
our “like-interacts-like” model by investigating whether the
designed self-assembling peptides could competitively interact
with conformationally similar amyloid peptides, thereby
inhibiting Aβ misfolding and self-assembly. We first examined
the inhibitory effect of the designed hexapeptides on Aβ
aggregation. The aggregation kinetics and morphological
changes of Aβ amyloid formation in the absence and presence
of different hexapeptides were monitored by ThT fluorescence
assay (Figures 4A and S9A) and AFM (Figures 4B and S9B). In
the absence of hexapeptides, increased ThT signals along a
typical sigmoid curve and AFM images clearly demonstrated
that Aβ monomers aggregated into long and branched amyloid
fibrils, with average heights of 8−12 nm and lengths of 1−2.5
μm. Upon coincubation of Aβ (20 μM) with different
hexapeptides (40 μM) at 37 °C for 8 h, we observed different
Aβ aggregation behaviors. First, CTIYWG(+), CTLWWG(+),
and GTVWWG(+) strongly inhibited Aβ aggregation and
oligomerization, as evidenced by the significantly reduced ThT
signals by 72.3, 99.7, and 87.1% for CTIYWG(+), CTLWWG-
(+), and GTVWWG(+), respectively (Figure 4A). AFM images
(Figure 4B) consistently showed that Aβ fibril growth was

Figure 3. Formation of amyloid-like fibrils by the computationally designed hexapeptides monitored using AFM (upper panel) and CD (lower
panel). The hexapeptides are classified into three groups with (A) high, (B) moderate, and (C) low or no self-assembling property. Hexapeptides (2
mM) were incubated in phosphate buffer solution at 37 °C for 2 weeks.
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arrested, with small amorphous-like aggregates of ∼6−12 nm in
the presence of CTIYWG(+) and GTVWWG(+), and very few
thin protofibrils (∼5−10 nm in height and ∼100 nm for

length) with CTLWWG(+) present. These results indicate that
these three hexapeptides are able to bind strongly to Aβ
monomers and other aggregation intermediates to halt the
structural transition and peptide association of Aβ monomers
toward fibrils. Second, CTVFIG(+) and IQIMIG(+) promoted
Aβ aggregation. Within the first 2 h, the structural transition
was similar to that of pure Aβ solution (Figure S9A). The
structural transition was accelerated after 4 h incubation since
the ThT signal displayed an increase of 41.9% for the Aβ/
CTVIFG(+) mixture and 13.3% for the Aβ/IQIMIW(+)
mixture. AFM images showed many thicker mature fibrils
produced in the presence of these two hexapeptides (Figure
S9B). The enhanced Aβ aggregation could be due to that these
hexapeptides preferentially accelerate fibril formation by
consuming conformational rate limiting Aβ oligomers. Finally,
CILFWG (+), GTLFWG(+), and PTRCGP(−) displayed
either weak or no inhibition effect on Aβ aggregation, as
indicated by the ThT and AFM results (Figure S9).
Additionally, since all selected hexapeptides(+) exhibit amyloid
characteristics, different hexapeptide-induced inhibition and
promotion of Aβ fibril formation could be due to a complicated
conformational selection of compatible (complementary) states
between different species.36

To further confirm specific binding behaviors between
designed peptides and Aβ, we performed SPR experiments to
determine binding affinities between hexapeptides and Aβ
(Figure 5). KD was obtained from Figure 5A using a
monovalent binding model to best fit binding curves at
equilibrium. The negative control PTRCGP(−) bound to Aβ
with a KD of 169.7 ± 51.8 μM, suggesting a very weak Aβ−
ligand interaction. Among 11 self-assembling hexapeptides(+),
6 hexapeptides displayed strong binding affinity to Aβ as
evidenced by KD ranging from 0.841 ± 0.078 to 4.421 ± 1.624

Figure 4. Inhibition of Aβ1−42 aggregation and cytotoxicity by self-
assembling hexapeptides. (A) Time-dependent ThT fluorescence
curves for pure Aβ1−42 (20 μM) and mixed Aβ-hexapeptides at
molar ratio of 1:2. (B) AFM images for pure Aβ1−42 and mixed Aβ-
hexapeptides aggregates at 8 h. (C) Inhibition of Aβ-induced
cytotoxicity against SH-SY5Y neuronal cells by hexapeptides using
MTT assay. Error bars represent the average of five replicate
experiments.

Figure 5. Validation of binding between Aβ1−42 and hexapeptide by SPR. (A) Scheme of hexapeptide binding assay on Aβ1−42 functionalized SPR
gold surface. (B) Representative set of binding data for CILFWG with determination of molecular binding constants by fitting the SPR binding data
(black) with theoretical models (red). Five runs are overlaid for concentrations at 25, 12.5, 6.25, 3.125, and 1.5625 μM. (C) Dissociation constant
(KD) of hexapeptides with Aβ1−42 monomer.
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μM, two of them showed moderate binding affinity (KD ranges
from 10.809 ± 2.546 to 36.116 ± 7.136 μM), and three of them
(VYIMIG, ITLFWG, and GTLFWG) showed weak binding
affinity (KD is larger than 120 μM). Our SPR results confirm
that the inhibitory ability of self-assembling peptides to largely
suppress Aβ aggregation arises from their strong binding
affinity to Aβ. Particularly, these peptides bind to Aβ monomers
relatively strongly (≤40 μM). Consequently, association of
these peptide inhibitors to the secondary structure of Aβ would
suppress Aβ aggregation and inhibit Aβ toxicity. The ligand
with greater binding affinity to Aβ is often found to effectively
inhibit Aβ aggregation and cytotoxicity.48

A sequence analysis of 182 designed hexapeptides with
strong self-assembling property showed that Cys, Val, Trp, Phe,
and Ile are frequently occurring hydrophobic residues, while
charged residues of Asp, Lys, Glu, and Arg have the lowest
(Figure S6). This because in the typical, parallel β-sheets
electrostatic repulsion arisen from charge−charge stacking
disfavors the self-aggregation of peptides, thus requiring
additional stronger stabilizing forces to compensate such
repulsive forces. Gly was found to facilitate the α-helix to β-
sheet transition and function as a molecular notch to stabilize
the sheet-to-sheet packing in amyloids due to the lack of side
chain chirality. Cys and Thr are likely to increase the intersheet
electrostatic interactions, strengthening the association of the
peptide inhibitors with amyloid motifs.
Experimental Affirmation of Hexapeptide Reduce Aβ-

Induced Cell Toxicity. Having demonstrated that the
designed hexapeptides can interact with Aβ and inhibit Aβ
aggregation, we examined whether the hexapeptides can protect
neuronal cells from Aβ-induced toxicity using the MTT SH-
SY5Y cell assay with fixed concentration of Aβ (20 μM) in the
presence of different Aβ/hexapeptide molar ratios of 1:2, 1:5,
and 1:10. MTT results (Figures 4C and S10) show that
incubation of Aβ (20 μM, pH 7.4) alone for 24 h led to ∼50%
cell viability, indicating that Aβ is highly toxic to cells as
expected. As a positive control, coincubation of hexapeptides
and the SH-SY5Y cells demonstrated that these hexapeptides
themselves had almost no or low cytotoxicity, with cell viability
of 81%−122% (Figure S10A). When SH-SY5Y cells were
exposed to mixtures of Aβ and hexapeptides, five hexapeptides
(CILFWG, CTLWWG, CTIYWG, IQIMIW, and VYIMIG)
exhibited a dose-dependent increase in cell viability as peptide
concentrations, while the other seven hexapeptides
(GTVWWG, CTVFIG, VTLWWG, ITLFWG, GTLFWG,
CTVWWG, and PTRCGP) were almost inactive at different
doses tested (Figures 4C and S10B). At a lower Aβ:hexapeptide
ratio of 1:2, almost all hexapeptide did not significantly reduce
Aβ-induced toxicity. Cell viability only improved by 2.1−14.6%
as compared to cells exposed to pure Aβ. However, as the Aβ/
hexapeptide ratio increased to 1:5, five hexapeptides increased
cell viability up to ∼31.7%. More significantly, at the Aβ/
hexapeptide of 1:10, CILFWG(+), CTLWWG(+), and
CTIYWG(+) strongly suppressed the Aβ-induced cell death,
Aβ cytotoxicity was almost completely inhibited, and cell
viability was improved by 32.6−45.1% relative to Aβ-induced
cell death, leading to overall cell viability of 82.1−94.6%.
Considering that the designed hexapeptide inhibitors them-
selves had little or rather weak cytotoxicity to neuronal cells, at
the higher Aβ:hexapeptide ratios (>1:5) the hexapeptides
enable to more effectively sequester Aβ aggregates, which help
to convert toxic Aβ oligomers into nontoxic or less toxic Aβ-
inhibitor complexes, leading to the protection of cells from

toxic Aβ aggregates. Although not all self-assembling
hexapeptides can protect cells from Aβ-induced cytotoxicity,
we indeed discovered several new peptide sequences with dual
functionalities of self-assembling and Aβ inhibition properties.
Our de novo computational design offers a great feasibility and
flexibility to develop new peptide inhibitors of Aβ that are not
derived from Aβ sequence.

■ CONCLUSIONS
In conclusion, we combine a QSAR model, MD simulations,
and biophysical experiments to systematically and efficiently
screen/design, characterize, and identify a series of self-
assembling hexapeptides as potential Aβ inhibitors. Particularly,
these new sequences are not directly derived from amyloid
sequences. The collective computational and experimental
results demonstrate a proof-of-concept of the “like-interacts-
like” design principle that self-assembling peptides with
amyloidogenic properties are able to interact strongly with
conformationally similar motifs of Aβ peptides and to
competitively reduce Aβ−Aβ interactions, thus preventing Aβ
aggregation and Aβ-induced toxicity. More importantly, due to
common structural and aggregation characteristics of amyloid
peptides, the designed peptide-based inhibitors are also likely to
prevent other amyloid peptide aggregation. These new
sequences can serve as a selection pool to be used as amyloid
inhibitors with further structural modification by non-natural
amino acids for improving their inhibitory ability against
amyloid diseases, or as self-assembling materials with well-
defined β-sheet structures for other biological applications.

■ METHODS
QSAR Modeling and Analysis. Structural Representation. The

QSAR model is built on two data sets of the Waltz data set49 and the
AmylHex data set,44 consisting of 116 positive amyloid-forming
peptides and 162 negative non-amyloid-forming peptides. We
developed and applied the “Index of Natural and Non-natural
Amino Acids” (NNAAIndex) QSAR model to characterize the
structural features of a total of 278 training hexapeptides as follows:
we first determined 335 physicochemical properties (e.g., alpha and
turn propensities, beta propensity, composition, hydrophobicity,
physicochemical properties, and other properties) to characterize the
structural features of 20 natural and 593 non-natural amino acids.
Then, we used a principal component method with a Kaiser
normalized Promax algorithm to cluster 335 properties into 6 new
NNAAIndex fingerprint factors, including hydrophobicity, alpha and
turn propensities, bulky properties, compositional characteristics, local
flexibility, and electronic properties, which account for 83.5% variance
of 335 properties based on the relationship between components and
eigenvalues. Since each amino acid is represented by 6 NNAAIndex
factors, the structural features of any hexapeptide designed/used in this
study can be readily characterized by simply constructing a 6 × 6
NNAAIndex matrix.

Correlation Methods. A linear discriminant analysis (LDA) was
used to classify the dependence of the hexapeptides using Y = a0 +
a1X1 + a2X2 +... + anXn, where Y is a dependent variable; X1, X2,... Xn
represents the independent variables (observed values); discriminant
coefficients of a1, a2, ... an correspond to the weights associated with
the respective independent variables. A hyperplane defined by the
linear discriminant function was applied to divide a n-dimensional
descriptor space into two classes (two regions), in which each
hexapeptide was discriminated into one of two classes. The predictive
classification of each sample was determined by the predictive scores
derived from the LDA model. The variables as inputs in the model
were selected by a stepwise method to decrease the number of
descriptors and to make the model more interpretable. The selection
of the variables was based on F value of the partial F test: the variable
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was accepted by the model if F value was larger than 3.84, while it was
rejected if F value was less than 2.71.
Model Validation. The predictive performance of the QSAR model

was validated using a jackknife test (leave-one-out, LOO, cross-
validation). In the LOO test, to avoid any biased propensity by using
single randomly selected sample in the data set, 278 samples were
iteratively removed one at a time (i.e., one removed sample as a
predicted sample, while the remaining samples as training samples),
and the predictive performance was recalculated each time and then
averaged by 278 times.50 A variety of statistical assessments including
accuracy (Acc), sensitivity (Sn), specificity (Sp), and the area under the
receiver operating characteristic (ROC) curve (AUC) were also used
to evaluate the performance of the QSAR model. Acc calculated the
percentage of samples that were correctly identified. Sn measured the
ability to correctly predict amyloid-forming peptides, while Sp
measured the ability to correctly reject nonamyloid-forming peptides.
Sn and Sp were threshold dependent measurements, so they failed to
present all the information provided by one predictive method. Thus,
the AUC, a trade-off between Sn and Sp, which was another threshold
independent measure, was used to assess the modeling performance.
MD Simulations of Hexapeptide Aggregation. To examine

the self-association ability of the designed hexapeptides, we
constructed two different flat β-sheet structures using two copies of
the same hexapeptides, with a parallel or antiparallel orientation of two
peptides relative to each other. Considering that a dimer is the smallest
building block of the large peptide aggregates, each peptide was packed
parallel (antiparallel) on the top of the other and no translation was
applied to one peptide relative to the other. The initial interpeptide
distance was set to 4.7 Å corresponding to a characteristic X-ray
scattering diffraction value within a β-sheet structure.51 Both C- and
N-termini of each peptide were not capped by carboxyl and amine
groups in order to avoid the potential artifact electrostatic repulsion
and attraction in both parallel and antiparallel models.
MD simulations were performed using the NAMD software46 with

CHARMM27 force field.47 Each model system was solvated in a pre-
equilibrated box of TIP3P water molecules, with a margin of at least 10
Å from any edge of the water box to any hexapeptide atoms. Each
system was then neutralized by adding Cl− and Na+ ions to mimic an
ionic strength of 100 mM. The resulting systems were subjected to
5000 steps of steepest decent minimization with peptide backbone
atoms harmonically constrained, followed by 5000 additional steps of
conjugate gradient minimization without any constraint. Short 1 ns
MD simulations were performed to heat the system from 0 to 310 K
by constraining the backbones of dimers. The production MD
simulations were performed using an isothermal−isochroic ensemble
(NPT, where T = 310 K and P = 1 atm) under periodic boundary
conditions. All covalent bonds involving hydrogen were constrained by
the RATTLE method so that a 2 fs time step was used in the velocity
Verlet integration. van der Waals (VDW) interactions were calculated
by the switch function with a twin-range cutoff at 12 and 14 Å. Long-
range electrostatic interactions were calculated using the force-shifted
method with a 14 Å cutoff. Structures were saved every 2 ps for
analysis. All analyses were performed using tools within CHARMM,
VMD, and codes developed in-house.
Experimental Methods. Materials. Hexapeptides (>95% purity)

were synthesized by Selleckchem Inc. (Houston, TX). Aβ1−42 peptide
(≥95.5%) was purchased from American Peptide Inc. (Sunnyvale,
CA). 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP, ≥99.9%), dimethyl
sulfoxide (DMSO, ≥99.9%), HCl, NaOH, Na2HPO4, NaH2PO4,
phosphate buffer (10 mM, pH = 7.4), thioflavin T (ThT, 98%), Tween
20, Dextran from Leuconostoc spp, and 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT, 98%) were purchased from
Sigma-Aldrich (St. Louis, MO).
Peptide Pretreatment. Aβ1−42 or hexapeptide was purified to obtain

a homogeneous solution of monomeric Aβ or hexapeptide with
unstructured conformation using our previously established meth-
ods.52,53 Briefly, all hexapeptides and Aβ were dissolved in 1,1,1,3,3,3-
hexafluoro-2-propanol (HFIP) for 2 h (1 mg/mL), sonicated for 30
min to remove any preformed aggregates or seeds, and centrifuged at
14 000 rpm for 30 min at 4 °C. The top Aβ- or hexapeptide-HFIP

solution was pipetted out, frozen with liquid nitrogen, and dried in a
freeze-dryer at −108 °C. The dry hexapeptide or Aβ powder was
lyophilized at −80 °C before use.

Self-Aggregation of Hexapeptides. Immediately prior to use, the
HFIP-treated and lyophilized hexapeptide powder was predissolved in
10 mM NaOH (final concentration of 5%). Hexapeptide solution was
prepared at 2 mM by dissolving the NaOH concentrated hexapeptide
solution into 100 mM phosphate buffer solution (PBS, pH = 7.4),
sonicated for 30 min to dissemble any preformed nuclei in ice water,
and centrifuged at 14 000 rpm for 30 min at 4 °C to condense
insoluble materials and small oligomers. The supernatant (∼75% of
the top solution) was incubated at 37 °C without further agitation for
2 weeks.

Inhibition of Aβ42 Aggregation. Homogeneous Aβ1−42 solution was
required for Aβ inhibition tests. The purified Aβ powder was aliquoted
in DMSO for 1 min and sonicated for 30 s. The initiation of 20 μM Aβ
[containing 1% (V/V) DMSO] aggregation in solution was
accomplished by adding an aliquot of the concentrated DMSO-Aβ
solution to 10 mM PBS buffer (pH = 7.4), followed by immediate
vortexing for thorough mixing. Aβ solution was then centrifuged at 14
000 rpm for 30 min at 4 °C to remove any existing oligomers, and 75%
of the supernatant was removed for further incubation or inhibition
experiments. The pure Aβ solution was incubated at 37 °C as control.
For Aβ inhibition experiments, 20 mM hexapeptide (in DMSO) stock
solution was dissolved in a freshly prepared Aβ monomer solution to a
final concentration of 40 μM. The mixed Aβ-hexapeptide (Aβ/
hexapeptide = 1:2) samples were incubated at 37 °C and examined by
AFM and ThT fluorescence assay.

Tapping-Mode Atomic Force Microscopy (AFM). Tapping-mode
AFM was used to monitor the morphological changes of any
aggregates formed in hexapeptide-only solution or mixtures containing
Aβ1−42 and a given hexapeptide. Aliquots (10 μL) at different
incubation times were taken out from incubated solutions and cast
onto freshly cleaved mica substrates for 30 s, rinsed three times with
50 μL of deionized water to remove any salt and loosely bonded
aggregates, and dried with compressed N2 for 5 min before AFM
imaging. Tapping-mode AFM imaging was performed in air using a
Nanoscope III multimode scanning probe microscope (Veeco Corp.,
Santa Barbara, CA) equipped with a 15 μm E scanner. Commercial Si
cantilevers (NanoScinece, Phoenix, AZ) with an elastic modulus of
∼40 N/m were used. All images were acquired as 512 × 512 pixel
images at a typical scan rate of 1.0−2.0 Hz with a vertical tip oscillation
frequency of 250−350 kHz. Representative AFM images were
obtained by scanning two individual samples at six or more different
locations of each sample.

Circular Dichroism (CD). CD spectra were collected on a J-810
spectropolarimeter (JASCO Inc.) at room temperature in a quartz
cuvette. CD spectroscopy measures both the soluble and dispersed
species. The hexapeptide solutions at 0 h, 1 week, and 2 weeks were
diluted with water at a hexapeptide solution/DI water ratio of 1:5 and
placed into a rectangular quartz cuvette of a 0.1 cm path length. The
spectra were scanned between 250 and 185 nm at a 0.5 nm resolution
and 50 nm/min scan rate. All spectra were corrected by subtracting the
baseline and averaged by three successive scans for each sample.
During incubation, large hexapeptide aggregates could sink to the
bottom of the cuvette out of the detection window, resulting in a loss
of the CD signal. For consistency, before each measurement, the
cuvette was thoroughly shaken for better dispersion.

Surface Plasmon Resonance (SPR). Surface plasmon resonance
(SPR) was used to determine the binding affinity between Aβ1−42 and
hexapeptide. The SPR measurements and data analysis were
conducted on an BI-SPR 4000 system (Biosensing Instrument Inc.,
Tempe, AZ) equipped with a dual-channel flow cell and two through-
the-handle six-port injection valves. PBS (10 mM), containing 0.005%
Tween 20 (PBST, pH = 7.4), was thoroughly degassed for 30 min and
used as a carrier solution. The dextran-modified sensor chip was
preconditioned prior to immobilization by delivering 10 mM HCl, 50
mM NaOH, and 0.1% (w/v) sodium dedecyl sulfate (SDS, Fisher) at a
flow rate of 100 μL/min. The dextran chip was covered with
streptavidin via the amine coupling chemistry by flushing the flow

ACS Chemical Neuroscience Research Article

dx.doi.org/10.1021/cn500165s | ACS Chem. Neurosci. 2014, 5, 972−981978



channels with 50 μg/mL streptavidin at 20 μL/min). After a stable
baseline had been obtained, biotinyated monoclonal Aβ antibody
(Covance, MA) was injected to achieve the highest surface coverage at
a flow rate of 10 μL/min. Then 2 μM Aβ solution (2 mM) was
injected with a syringe pump. A given hexapeptide solution was
injected at a flow rate of 40 μL/min.
Thioflavin T (ThT) Fluorescence Assay. The Aβ1−42 aggregation in

the presence and absence of hexapeptide inhibitors was monitored by
ThT assay. ThT solution (2 mM) was prepared by adding 0.0328 g of
ThT powder into 50 mL of DI water. Then 250 μL of the 2 mM ThT
solution was further diluted into 50 mL of Tris-buffer (pH = 7.4) to
reach a final concentration of 10 μM. At different incubation time
points, 5 μL of 20 μM Aβ with or without hexapeptides was put into
250 μL of 10 μM ThT-Tris solution. Fluorescence spectra were
obtained using a Fluorolog 3 spectrofluorometer (Horiba Jobin Yvon,
Edison, NJ). All measurements were carried out in aqueous solutions
using a 0.5 cm × 0.5 cm quartz cuvette. ThT fluorescence emission
intensity of each sample was recorded between 460 and 510 nm with
an excitation wavelength of 450 nm. Each experiment was repeated in
three independent samples.
Cell Culture. All chemicals for cell culture tests were purchased from

Life Technologies unless otherwise stated. Human neuroblastoma SH-
SY5Y cells (ATCC, Manassas, VA) were cultured in 75 cm2 T-flasks
(Corning) in sterile-filtered Eagle’s minimum essential medium and
Ham’s F-12 medium mixed at a 1:1 ratio containing 10% fetal bovine
serum (EMEM, ATCC, Manassas, VA) and 1% penicillin/
streptomycin at 37 °C under humidified air containing 5% CO2.
Cells were cultured to confluence and then harvested using 0.25 mg/
mL trypsin/EDTA solution (Lonza). Before adding Aβ1−42 and a given
hexapeptide, cells were resuspended in Opti-MEM reduced serum
medium and counted using a hemacytometer. Cells were then plated
in a 96-well tissue culture plate with approximately 50 000 cells/well in
100 μL of Opti-MEM reduced serum medium, and allowed to attach
for 24 h inside the incubator.
MTT Cell Toxicity Assay. Aβ1−42 (20 μM) was added into the SH-

SY5Y cell media to study Aβ-inflicted cytotoxicity. Vybrβnt MTT cell
proliferation assay was performed (Life Technologies). A solution
containing 12 mM MTT was prepared by dissolving 5 mg of MTT in
1 mL of sterile PBS (pH 7.4). To each well, 10 μL of MTT solution
was added, and the microplates were further incubated at 37 °C for 4 h
to convert MTT into formazan crystals. DMSO (200 μL) was then
added to each well, and the microplates incubated for an additional 10
min at 37 °C and mixed thoroughly to dissolve the formazan crystals.
Formazan crystal quantification was examined using a Synergy H1
microplate reader (BioTek) at 540 nm. The absorbance of negative
control wells was averaged and subtracted from all other samples to
eliminate background signals. Sample absorbance was then compared
with a standard curve to determine the number of viable cells.
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